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Abstract. Two algorithms are formulated for systematically truncating the set of basis 
states required in lattice Hamiltonian calculations, thus allowing larger lattice sizes to be 
treated. They are tested for the case of the (1 + 1)-dimensional Ising model. It is shown 
that smoothly convergent finite lattice sequences are obtained, which can successfully be 
extrapolated to the bulk limit. We point out the relevance of the technique for lattice 
calculations in higher dimensions. 

1. Introduction 

Finite-size scaling techniques may be used to explore the spectrum and phase structure 
of models in lattice field theory and statistical mechanics (Hamer and Barber 1981a, b, 
hereafter denoted I and 11, Roomany and Wyld 1980, Nightingale 1976). One 
calculates an eigenvalue of the Hamiltonian or transfer matrix on a sequence of lattices 
of increasing size, and then uses sequence extrapolation algorithms (11, Barber and 
Hamer 1982) to estimate the bulk limit for an infinite lattice. For two-dimensional 
models, these procedures equal or surpass in accuracy any other general technique 
(11, Blote et a1 1981, Blote and Nightingale 1982). 

In three or four dimensions, however, the value of this technique is much less 
obvious. One needs a sequence of four or five different lattice sizes for the extrapola- 
tion method to work well; but the extremely rapid proliferation of basis states forbids 
one from calculating exact eigenvalues for the larger lattices (Roomany and Wyld 
1980, Irving and Thomas 1982). In the Hamiltonian field theory formalism (Kogut 
and Susskind 1975), for instance, one can solve the 5 X 5-site lattice for the (2 + 
1)-dimensional Ising model (Hamer 1982), but for any model more complicated than 
that, even the 4 x 4 lattice will be out of reach. 

We are forced, therefore, to consider the use of systematic approximation schemes 
for the larger lattice sizes. The object of this brief report is to investigate two such 
approximation schemes in detail, and to try them out on a simple, soluble model, 
namely the (1 + 1)-dimensional Ising model, in order to check whether the hypotheses 
of finite-size scaling (Fisher 1971, Fisher and Barber 1972, I) are still obeyed, and 
whether the sequence extrapolation algorithms can still be applied to the approximate 
finite-lattice sequences. 

t Permanent address: Department of Theoretical Physics, Institute of Advanced Studies, Australian National 
University, Canberra 2600, Australia, 
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There are several different approximations which might be employed. Each 
involves a truncation of the set of basis states, which reduces the size of the matrix 
Hamiltonian whose eigenvalues are to be calculated. They are: 

(1) Truncation of the single-site spectrum. An example is the work of Barber and 
Richardson (1981), who considered a truncated O(2) model in (1 + 1) dimensions, in 
which the spectrum of spin values allowed at each site was reduced from the integers 
[-a, +CO] down to [-1, +1]. This restriction is similar in spirit to replacing the original 
continuous O(2) symmetry group by a discrete analogue, a device which has also been 
used in Monte Carlo calculations (e.g. Rebbi 1980, Petcher and Weingarten 1980). 
Since we intend here to stick with the original model, we shall not consider this option 
any further. 

(2) Order N cut-of. This approximation is associated with a perturbation theory 
framework, in which one breaks up the Hamiltonian into two pieces H = HO + x V, 
where x is the perturbative coupling constant. The eigenstates of Ho are used as basis 
states for the calculation. Then in calculating, say, the ground-state energy, one can 
choose to throw away all basis states except those which can be reached from the 
ground state of Ho by application of the perturbation operator V up to N times. If 
one then increases N in proportion to the lattice size M, as discussed in the text, one 
may obtain a sequence of approximate finite-lattice eigenvalues which will converge 
to the correct bulk limit-at least in the region where the perturbation series in x 
converges. A cut-off of this sort has been used, for example, by Crewther and Hamer 
(1980). 

(3) Eo cut-of. This approximation is also related to the perturbation theory 
framework, and consists in throwing away all those basis states whose unperturbed 
energy (eigenvalue of Ho) is above a given cut-off Eo. Again, if one increases the 
cut-off Eo in proportion to the lattice size M,  a sequence converging to the correct 
bulk limit should be obtained. This is a rather mild cut-off, and is unlikely to be very 
useful in three or four dimensions. But it may come in useful for the treatment of 
two-dimensional models with a continuous symmetry group. 

The N cut-off and EO cut-off schemes are tested on the (1 + 1)-dimensional Ising 
model in the remainder of this paper. The qualitative conclusions, which we conjecture 
will hold in the general case, are as follows: 

(a) The EO cut-off sequence converges to the exact finite-lattice sequence, at afl  
couplings, as the lattice size M increases. Thus all the hypotheses and techniques of 
finite-size scaling may be safely applied in this approximation. 

(b) The N cut-off sequence converges ‘linearly’ (i.e. exponentially fast in M )  
provided the coupling lies below the critical point. The rate of convergence is the 
same as for the exact finite-lattice sequence, and thus appears to be controlled by the 
same physical parameter, the correlation length (Fisher 1971, Au-Yang and Fisher 
1975). At the critical point the N cut-off sequence still appears to converge logarithmi- 
cally, but it is unlikely that the usual finite-size scaling techniques for obtaining critical 
parameters can be applied. Beyond the critical point, the N cut-off sequence is 
virtually useless. 

It is our hope that the N cut-off approximation scheme will be useful in treating 
lattice gauge theories in three and four dimensions. Our results here indicate that 
the N cut-off sequence may be reliably extrapolated to the bulk limit, provided the 
system does not undergo a phase transition. It remains to be seen whether such a 
technique can challenge the standard Monte Carlo methods (Binder 1976, Creutz et 
a1 1979), which involve a (stochastic) approximation scheme applied to a relatively 
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large finite lattice. It is our belief that systematic approximation schemes of the present 
sort will eventually prove more reliable and effective. 

2. Formulation 

The field theory version of the Ising model in (1 + 1) dimensions has the simple 
Hamiltonian (Fradkin and Susskind 1978, Hamer et a1 1979) 

Here the index m labels sites on a one-dimensional spatial lattice, with periodic 
boundary conditions, while the time variable is taken to be continuous. The ui are 
Pauli matrices acting on a two-state spin variable at each site, g is a dimensionless 
coupling constant, a is the lattice spacing, M is the total number of sites and x = 2/g2. 

It is usually convenient to deal with the reduced, dimensionless Hamiltonian 

W = (2a/g)H. (2.2) 

We shall also work in the ‘high-temperature’ representation 

w = WO-xv, (2.3) 
where 

m = l  m = l  

Then in this representation cr3(m) is diagonal, and x is the perturbation coupling 
constant. 

This model is of course exactly soluble. In the thermodynamic limit M + 00, the 
eigenvalues of Wwere found by Pfeuty (1970): the ground-state energy per site is 

wo/M= 1 - ( 2 / ~ ) ( 1 + x ) E [ 4 ~ / ( 1 + ~ ) ~ ]  (2.5) 

where E ( m )  is the complete elliptic integral of the second kind. The mass gap is 

F(x)=w1-w0=2(1-x)  (x s 1). (2.6) 

Thus the model exhibits a phase transition at x = 1 with critical exponent v = 1. 
The eigenvalues for finite M can also be evaluated analytically (Schultz et a1 1964). 

It has been verified (I) that they converge to the bulk limits (2.5) and (2.6) in the 
manner predicted by finite-size scaling theory. For purposes of reference, we display 
some of these exact finite-lattice eigenvalues in figure 1. It can be seen that the 
limiting mass gap is given by (2.6) for x s 1, and is zero for x > 1, corresponding to 
the presence of two degenerate ground states in the low-temperature phase. 

To compute the finite-lattice eigenvalues numerically (I), we work in a basis of 
high-temperature eigenstates: that is, eigenstates of WO, or the spin u3(m) .  Starting 
from the ground state of WO, which has all spins up, one may build up a complete 
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X 

Figure 1. The mass gap F ( x , M ) = w l - w o  for the finite lattice king model in (1+1) 
dimensions illustrating convergence to the bulk limit which is F ( x )  = 2(1- x )  for x s x ,  = 1. 
The numbers label the lattice size M. For clarity, odd values of M are omitted. 

list of the translation-invariant basis states, and of the matrix elements of V connecting 
them, by iterative applications of the perturbation operator V. Since this operator 
flips two spins at a time, a total of N = [M/2]  applications of V is sufficient to generate 
the complete set of basis states for W on the finite lattice+. The lowest eigenvalue 
may now be calculated by standard methods for large sparse matrices: we used a 
Lanczos algorithm for this purpose. The eigenvalues of interest were calculated 
accurate to at least seven significant figures. 

Our object here is to discuss the effects of two approximation schemes, each 
involving a truncation of the set of basis states. The first scheme is the ‘N cut-off’: 
that is, an approximation in which one halts the iterative process referred to above 
after a selected number N of applications of V, so that the list of basis states is not 
completed. There is in fact a ‘natural’ choice of N corresponding to each lattice size 
M (the linear dimension), namely N = [ ( M  - 1 ) / 2 ] ,  because this corresponds to the 
maximal order of perturbation theory in which the finite-lattice results correctly match 
the bulk limit for w o  and wl. Beyond that order, the effects of the lattice boundaries 
become evident in the perturbation series: in diagrammatic terms, one starts to get 
diagrams which ‘wrap around’ the periodic lattice. 

The second approximation scheme we shall refer to as the ‘Eo cut-off’. This consists 
of throwing away those basis states whose unperturbed energy Eo (eigenvalue of WO) 
is greater than some maximum E f a x .  The ‘natural’ choice of cut-off here is E f a x  = 2M 
x ( 2 M - 2 )  for M odd (even) which again corresponds to the maximal order of 
perturbation theory in which the finite-lattice results match the bulk limit. 

i As a matter of fact, there are two disjoint sectors of states, namely those with even and odd numbers of 
flipped spins. The lowest eigenvalue in each sector is wg and wl, respectively. 
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In (1 + 1) dimensions, and for this model in particular, both these cut-offs are very 
mild in that the saving in basis states is rather small. In fact, for odd site lattices these 
cut-offs eliminate no basis states at all! But for more complicated models with a 
continuous symmetry group, or in higher dimensions, the corresponding cut-off s will 
be much more effective. To study their qualitative effects on the eigenvalues, we have 
actually chosen cut-offs N = [M/2] - 1 and E?"" = 2(M - l), but have also considered 
more severe cut-offs. 

The application of these cut-offs should affect the low-lying eigenvalues very little. 
This is illustrated in figure 2, which shows the relative contribution to the vacuum 
from the basis states as a function of order N and unperturbed energy EO at the 
critical coupling x = 1, and for lattice size M = 14. The weights of the individual basis 
states fall off rapidly, in a roughly exponential fashion with Eo, over six orders of 
magnitude; and decrease in a similar fashion with N, though at a slower rate. Similar 
behaviour is found at other couplings, for other lattice sizes and for the eigenvalue wl. 

E, 

Figure 2. The contribution (amplitude squared) of the basis states to the vacuum state 
of a 14-site lattice at x = 1. In (a) are shown the total contributions (on an arbitrary linear 
scale) from states of a given Eo and order of perturbation N .  In ( 6 )  the average contribution 
per configuration state is plotted logarithmically (arbitrary scale) against Eo. 
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3. Results 

We shall test the convergence of our two approximation schemes at three different 
coupling values, namely x = 0.6, before the critical point; x = 1.0, the critical point; 
and x = 1.3,  beyond the critical point. 

3.1. x =0.6 

Since this coupling is within the radius of convergence of the power series, and both 
approximation schemes get the perturbation series correct up to order N = M ,  we 
expect both schemes to converge ‘linearly’ (i.e. with error O(e-constantxM )) to the bulk 
limit as M+co. This is confirmed in figure 3 ( a ) ,  which shows a semi-log plot of the 
deviations from the bulk limit against lattice size M for the vacuum state, for the 
exact finite-lattice sequence, the ‘N cut-off’ sequence, and the ‘Eo cut-off’ sequence. 
All three sequences exhibit rapid linear convergence to the bulk limit; and further- 
more, all three seem to converge at the same rate (i.e. with the same asymptotic slope 
on the semi-log plot). This can readily be understood. The rate of convergence of 
the exact finite-lattice sequence is controlled by the correlation lengtht, which deter- 
mines the size of the boundary effects: and it is natural to suppose that the same 
physical parameter should control the convergence of the cut-off sequences as well. 
Finally, it appears that the Eo cut-off sequence rapidly converges on the exact 
finite-lattice sequence. The basis states with high Eo have negligible weight, as shown 
already in figure 2, and can apparently be thrown away with impunity. We have 

-3 Ld 2 4 5 0 10 12 t i  

M 

Figure 3. The quantity loglolwo/M - (oo/M),I which is the logarithm of the finite-lattice 
deviation from the bulk limit of the Ising model vacuum energy. In ( a )  linear convergence 
is seen to obtain at x = 0.6, whereas at the critical point x = 1, shown in ( b ) ,  logarithmic 
convergence obtains. The results for the exact (O), Eo cut-off (0) and N cut-off (0) 
sequences are shown. The Eo cut-off values for odd M are the same as the exact ones 
(see text) and, at x = 0.6, the N cut-off values for even M happen to be approximately 
the same as the exact ones, although the difference has opposite sign. 

t We are indebted to Professor R J Baxter for this remark. 
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confirmed that the same qualitative behaviour holds for more severe cut-offs, N = 
[M/2] - 2, and Erax = 2(M - 2), and for the mass gap? as well as the vacuum energy. 

A sequence which is converging linearly may be extrapolated using an iterated 
Aitken algorithm (11). Unfortunately, the cut-off sequences are ‘staggered’ between 
odd and even M values, as may be seen in figure 3. This halves the effective length 
of the sequence, since Aitken’s algorithm does not cope with a staggered sequence 
at all well, and we are forced to deal with odd and even M values separately$. 

Table 1 shows, as an example, the Aitken tables for the exact, N cut-off and Eo 
cut-off sequences for the vacuum energy wo/M at x = 0.6 using even lattice sizes M. 
Using all available lattice sizes (2 ,3 ,4 ,  . . . , 14), the exact sequence extrapolation 
gives the vacuum energy and mass gap to at least seven significant figures, which 
represents an improvement of three to four figures over the M = 14 results alone. 
The shorter even-site exact sequence presented in table 1 is almost as accurate at 
better than six significant figure accuracy. The order N cut-off sequence rivals this 
with six§ figure accuracy and the Eo cut-off is almost as successful with five figure 

Table 1. Aitken tables for the vacuum energy ( u o / M )  sequences of finite lattice results 
at x = 0.6 using lattice sizes M, where M is even and 2 s M s 14. Results are shown for 
exact and cut-off sequences. The entries in brackets make use of the M = 2 results which 
might be regarded as special in the cut-off sequences. 

0.166 1904 Exact 
0.100 6422 0.093 0443 
0.093 8335 0.092 3335 0.092 2435 
0.092 6043 0.092 2536 0.092 2392 0.092 2386 
0.092 3315 0.092 2414 0.092 2387 
0.092 2638 0.092 2392 
0.092 2457 

(0.000 0000) 
0.083 0950 (0,091 3370) 
0.090 5933 0.092 1288 (0.092 2336) 
0.091 8678 0.092 2214 0.092 2379 (0.092 23863 
0.092 1446 0.092 2354 0.092 2385 
0.092 2130 0.092 2379 
0.092 2313 

N s [M/2 - 13 

(0.000 0000) EoS2(M-1)  
0.096 5279 (0.093 8075) 
0.093 7286 0.091 8425 (0.092 1773) 
0.092 6018 0.092 2461 0.092 2412 (0.092 2380) 
0.092 3314 0.092 2412 0.092 2378 
0.092 2638 0.092 2392 
0.092 2457 

+ In the high-temperature representation the ‘ N  cut-off‘ results for the mass gap are peculiar, in that they 
are already almost exactly equal to the bulk limit. This is because the exact result (2.6) is itself a linear 
function of x. Using a low-temperature representation ( V  diagonal rather than Ho), one obtains precisely 
the same results for the exact finite-lattice eigenvalues, but the effect of truncation is quite different and 
in practice provides a less useful tool. 
$ This ‘staggering’ should not occur for lattice gauge models. 
5 This particular result is unusually good. Neighbouring couplings show five figure accuracy is more typical. 
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accuracy. For each cut-off the sequence extrapolation allows a gain of 1-2 extra 
figures of accuracy over the M = 14 result. 

A summary of these results is contained in table 2. 

Table 2. The accuracy, i.e. IF(M)-  F(m)l,  achieved using the exact finite-lattice sequence 
and the cut-off sequences. The bulk lattice exact results for wo/M are given by equation 
(2.5). 

Exact N cut-off Eo cut-off 

x ~ 0 . 6  wo/M 2 x 1 x io-’ 1 x 
F 6 x lo-’ 8 x 2 x 10 -~  

F 4 x 10 -~  2 x 1 0 - ~  1 x lo-’ 
7 x 

1 x 

x = l  wo/M 5 x 8 x 

~ = 1 . 3  wo/M 2 x io-’ 2 x 
F 2 x - 8 x lo-’ 

Length of sequence 13  6 6 

3.2. x=1.0 

This is the critical point coupling. According to finite-size scaling theory (Fisher 1971, 
Fisher and Barber 1972, I), the exact finite-lattice eigenvalues at this point are expected 
to converge ‘logarithmically’ (i.e. with error O(M-’), where for the mass gap y = 1) 
to the bulk limit M + CO. This is confirmed+ in figure 3(b), which shows a log-log plot 
of the deviations from the bulk limit against lattice size M for the vacuum energy as 
an example. Again, all these sequences show similar behaviour, and appear to have 
the same asymptotic slope (corresponding to y = 2 for the vacuum state). And again, 
the Eo cut-off sequence rapidly converges to the exact sequence. Similar conclusions 
apply for more severe cuts, and for the mass gap as well as the vacuum energy (though 
the N cut-off results for the mass gap exhibit the same peculiarity described in the 
footnote to 0 3.1). 

A sequence which is converging logarithmically may be extrapolated using a 
‘modified VBS’ algorithm (Vanden Broeck and Schwartz 1979,II, Barber and Hamer 
1982). The accuracies achieved are summarised in table 2. For the vacuum energy 
the overall accuracy is only slightly worse than that achieved for linear convergence 
( 0  3.1). Again, much of the reduction in accuracy in the cut-off sequences is attributable 
to the shorter sequence lengths. 

3.3. x =  1.3 

This coupling lies beyond the critical point. Now the exact finite-lattice sequence is 
once more expected to converge linearly to the bulk limit since we have moved away 
from the critical region again. This behaviour is illustrated graphically in figure 1. It 
turns out that the Eo cut-off sequence converges to the exact one as before, and 
therefore exhibits the same scaling behaviour. But the N cut-off sequence behaves 
badly beyond the critical point, as one might expect. The sequence for the vacuum 
energy does seem to converge to the correct bulk limit, but only in a slow (possibly 

t In I,  the finite-size scaling hypothesis for the mass gap was analytically proved to be correct, for the exact 
sequence. 
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logarithmic) fashion. The sequence for the mass gap appears to converge towards a 
value -0.6, i.e. a continuation of the straight line 2(1 - x ) ,  which is only valid at high 
temperature (x s 1). The Eo cut-off sequence may be extrapolated using the Aitken 
algorithm with reasonable success, and results are summarised in table 2. 

3.4. Critical point parameters 

It has been shown in I1 that by the use of finite-size scaling hypotheses combined 
with the modified VBS sequence extrapolation algorithm, one may extract highly 
accurate numerical estimates of the critical parameters from the exact finite-lattice 
sequence. In the present case, one may quite easily extract a value for the critical 
coupling xc accurate to six significant figures, and one for the exponent v accurate to 
five significant figures; but we shall not exhibit the results in detail. Since the Eo 
cut-off sequence converges to the exact one, it is clearly possible to apply the same 
hypotheses and methods again. We find that this application is successful, but because 
the cut-off sequence is ‘staggered’ (effectively, halved in length), one only obtains an 
accuracy of four figures for xc, and two figures for v. The N cut-off results for the 
mass gap happen to lie extremely close to the bulk limiting curve 2(1 -x ) ,  as mentioned 
previously, and hence one could also estimate the critical parameters with good 
accuracy from these results (for example, a 14-site lattice gives x c  and v to four and 
five significant figures respectively). But this situation is peculiar to the Ising model. 
In general, one cannot expect to apply the scaling hypotheses with any success to the 
N cut-off sequence near a critical point. 

4. Conclusions 

For the ‘Eo cut-off’ approximation scheme, we have found that the EO cut-off sequence 
rapidly approaches the exact finite-lattice sequence at all coupling values (although 
presumably the convergence slows as x gets large). It follows automatically that all 
the standard finite-size scaling methods may be applied, giving accurate values for 
the eigenvalues and critical parameters in the bulk or thermodynamic limit. 

For the ‘N cut-off’ scheme, it was found that below the critical coupling xc = 1, 
and within the radius of convergence of the high-temperature power series expansions, 
the N cut-off sequence converges linearly like the exact sequence. Furthermore, the 
rate of convergence is the same, and is presumably determined by the same physical 
parameter, namely the correlation length. It follows that standard extrapolation 
schemes such as the iterated Aitken algorithm may be applied to obtain accurate 
estimates of the bulk eigenvalues. Unfortunately, it is not possible in this model to 
test whether the same conclusions apply in a situation where one is beyond the radius 
of convergence of the power series, but still short of any physical critical point. Our 
experience (Hamer et a1 1982) suggests that they do apply. 

At the critical coupling x c =  1, the N cut-off sequences appear to converge 
logarithmically like the exact ones; but because of the peculiarities of the Ising model, 
we are not able to draw any general conclusions about the estimation of critical 
parameters in the N cut-off scheme. Beyond the critical point, these results are 
essentially useless. 

Where will these approximation schemes be of use? There is little to be gained 
in their application to models with a discrete symmetry group in two dimensions, 
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because the saving in basis states is relatively small, and the only effect will be to 
reduce the effective length of the finite-lattice sequence due to the ‘staggering’ 
discussed in § 3. But for two-dimensional models with a continuous symmetry group 
some sort of cut-off is essential: and we would suggest that the Eo cut-off scheme is 
a natural one to use in these cases. So far as we know, it has not yet been tried in 
the systematic form discussed here. 

In higher dimensions, one is essentially forced into some sort of approximation 
scheme by the rapid proliferation of states, as was outlined in the introduction. The 
EO cut-off scheme is too mild to be of much use here: it will not eliminate enough 
states. But we expect some useful results to be obtainable using the N cut-off scheme. 
To obtain a complete set of states for a discrete model on an M d  lattice requires 
O ( M d )  orders of perturbation. A restriction to states of order N < M  therefore 
provides an enormous saving. For example, for a Z(2) pure gauge theory in (2 + 1) 
dimensions, a cut-off at order M-1 on a 5 x 5  lattice allows one to handle 1000 
rather than 160 000 states. The savings for more complicated groups are even more 
spectacular. We are currently investigating the use of these techniques in 2 + 1 
dimensions. 
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